
EE 2101 - EXPERIMENT 9 
CAPACITOR CURRENT-VOLTAGE RELATIONSHIP 

 
INTRODUCTION 

 
 A capacitor is a linear circuit element whose voltage and current are related by a differential equation.  
For a capacitor, the relationship between current and voltage is [1]:  
  

  
 In order to experimentally determine the current, a series resistor, R, must be added to the circuit.  Also, 

the function generator resistance, Rg (its Thévenin equivalent resistance), contributes additional resistance 
to the circuit.  The entire resistance capacitance circuit is:  
  

 
  

where vg is the Thévenin equivalent voltage of the function generator.  The first order differential equation 

relating the voltage across the capacitor, v, to the source voltage, vg, is:  
 

 

where R Rg Rs.  Thus, 
 

 

 

The complete solution for v consists of two parts,  
 

 
 

where vn is the natural response (complementary response) and vp is the particular response.  The natural 

response, vn, is the response that occurs when the forcing term, vg, is zero,  
 

 



where A is an arbitrary constant of integration.  The particular response depends on vg. 
 

 In this experiment, we will consider vg that is a square wave signal. Suppose vg has been Vm for a 

long time and is suddenly switched from Vm to + Vm,  

 
  
For convenience, assume the switching occurs at time, t, equal to zero.  It can be shown that the particular 
response is,  
 

 

So, the complete solution for t > 0 is  
 

 

 The constant, A, can be determined by considering what happens to the capacitor voltage, v, when vg 

changes from  Vm   to + Vm.  Just prior to the voltage change in vg, v 0 Vm.  Since the voltage 
across a capacitance cannot change instantaneously, this is also the voltage the instant after the change in 

vg, v 0 Vm.  So, v 0   Vm A Vm.  And the complete solution is given by 
 

 
  
The general shape of the response of the capacitor voltage is,  

 
 
 
 
 



At the time equal to RC (which is called the time constant), the exponent has a value of -1.  So, the value 
of the response at this point is,  
 

 
 

 
 

 
 

 
 

Therefore, at a time equal to the time constant, RC, the capacitor voltage, v, has made 0.632, or 63.2% of 
the total change.  

 In this lab, we are interested in observing the voltage across the capacitor as well as the current 
following through it. We cannot measure current directly using the oscilloscope, hence we will indirectly 
measure current through the capacitor by measuring the voltage across the resistor in series with it. Since 
the resistor is in series with the capacitor, they share the same current. The  
 

 

 
Therefore, to observe the current following through the capacitor, we measure the voltage VR across the 
resistor Rs and divide it by the constant Rs to obtain the exact value. In this lab, we set Rs to 1 ohm so VR 
measured is exactly i. We use a very small value of resistor so the voltage drop across the resistor is minimal, 
hence the nodal voltage at a is approximately equal to the voltage across the capacitor (as illustrated in step 
II). 
 
NOTE: Read through the calculations section prior to beginning the experimental procedure, to gain a better 
understanding of what we are measuring in the lab. 
 
Purpose 
 
 To demonstrate the relationship between the voltage and current of a capacitor.  

Experimental Procedure 
 

1. Connect the oscilloscope directly to the signal generator.  Use DC coupling throughout this 
experiment.  Set up the signal generator to produce a 1 kHz, 5 Vpp, square wave with 0 DC offset as 
measured on the oscilloscope.   

 
2. Using an LCR meter, measure the actual values of the capacitance, C, and series resistance, R, then 
connect the circuit as shown.  Display channels 1 at 2 V/div and channel 2 at 100mV/div.  Use the math 
menu to display a third trace that is equal to channel 1 minus channel 2. You may wish to move traces 
1 and 2 vertically so that they do not overlap.    

 
You will observe that the node voltage measured on channel 1 is approximately equal to the difference 
between channel 1 and channel 2 (i.e. voltage across the capacitor), since the voltage drop across the 
resistor is minimal.  Hence, we can confidently use channel 1 measurements as the capacitor voltage. 



    
 

1. Sine wave: Turn off the math button.  Set the time base to 200 s/div.  Change the signal 
generator to produce a sine wave but leave the amplitude, offset, frequency, etc. controls alone.  
  

a) Center both traces vertically so that the ground symbol for each trace lines up with the 
centerline on the oscilloscope.  Temporarily turn off channel 2 and measure the Peak-peak, 
Average, and Period for the waveform on Channel 1.  Use the quick measure menu to do 
this as this menu will cause the measurements to be displayed on the screen.  Save this 
screen and include it in your report. 

b) Now turn off Channel 1 and turn on Channel 2.  Measure the same three quantities for 
Channel 2, save the screen, and include it in your report. 

c) Finally display both channels simultaneously and use quick measure to determine the phase 
difference between channels 1 and 2.  Save this screen and include it in your report.  

2. Triangle wave: Change the signal generator to produce a triangle wave and repeat all of the 
measurements you made in part 1.  Save both screens (one screen for channel 1 and one screen 
for channel 2) including the displayed measurements of peak-peak, average and include them in 
your report.  You do not need to save the screen for the phase measurement in the triangular 
waveform case.   

 

 
3. Square wave: Change the signal generator back to "square wave".  Adjust the signal generator's 

amplitude so that the waveform across the capacitor (channel 1) is 10 Vpp with 0 DC offset.  
The waveform across the capacitor should look like a square wave with rounded corners.  Notice 
how the rounded corners in channel 1 line up with the current spikes (corresponding to voltage 
spikes across the resistor) on channel 2.   

 



a) Now turn off channel 2 so that you are only looking at the capacitor voltage waveform.  
Set the horizontal sweep, vertical amplification, and horizontal position to make the 
transition from -5 Volts to +5 volts (approximately) fill as much of the screen as possible.   

b) Using the cursors, determine the time constant (as described in the theory section on page 
3). 

4. Display channel 1 at 5 V/div and channel 2 at 100 mV/div with a horizontal setting of 
100 s/div.  Turn off channel 1 and display channel 2 at the smallest number of volts/div and 
the smallest number of s/division that will allow you to see both the positive and negative 
spikes filling up as much of the screen as possible.  You may have to adjust the horizontal 
position to get both spikes displayed at the same time.   

 

 
Calculations  
 

1. In part 1 of the experimental procedure, the voltage across the capacitor was a sinusoidal signal.  
 

a) Did the current of the capacitor (which is measured by voltage across resistor as discussed 
on page 3) lead or lag the voltage (that is, was the current waveform ahead of or behind the 
voltage waveform in time)? 

b) What is the phase difference (in degrees) between the voltage and the current?  

c) Using the actual capacitance value, calculate the (peak-to-peak) value of the current that 
would be expected for the observed voltage across the capacitor.  Compare this value with 
the peak-to-peak current observed experimentally. 

2. In part 2 of the experimental procedure, the voltage across the capacitor was a triangular waveform.  
 

a) Using the actual capacitance value, calculate the theoretical capacitor current 
corresponding to the positive and negative slopes of the triangular waveform.  

b) Do these currents agree with the values experimentally observed?  If not, why not?  

3. In part 3 of the experimental procedure, the signal generator produced a square wave voltage.  
However, because of the large currents that occur immediately after the voltage transition of the 
voltage generator, the voltage of the capacitor differed from a true square waveform.  In the theory 
section of this experiment, it was shown that the voltage transitions for the capacitor were 
exponentially dependent on time. 
  

a) What was the effective time constant, RC, of the circuit?  

b) Using the time constant and the actual capacitance value, what was the overall resistance 
of the circuit?  



c) Is this the value of resistance one would expect?  Why?  

4. In part 4 of the experimental procedure, the current pulse associated with the voltage transition for 

a vg with a square waveform was observed and saved.  The voltage across a capacitor depends on 
the charge, q, resting on the plates,  

  

  
 If the voltage changes by a certain amount, v, the charge must also change accordingly,  

  
q C v. 

 The change in charge is equal to the integral of the current of the capacitor over the interval 
 corresponding to the voltage change,   

    

q idt 
  

 For the square waveform voltage, the overall change was 10 volts.  Therefore, the area under the 
 current pulse should be 10C, where C is the capacitance. 
  

a) Using graphical integration, determine the area under the experimentally observed current 
pulse, in coulombs.  

b)  Compare the value calculated in (a) with the expected value, based on the actual 
capacitance and the actual voltage change.  Explain any discrepancies.  
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